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ABSTRACT 

An investigation was conducted to determine the feasibility of 
extending the capability of ablation test facilities by surrounding the 
high enthalpy flow with a coaxial cold air jet.   The investigation in- 
cluded both analytical and cold flow experimental studies.   It was 
determined that the coaxial flow technique is extremely promising, 
offering the potential of easily doubling the facility model size capa- 
bility.    Results of the cold flow experimental tests and criteria for 
application of the technique to high enthalpy facilities are presented. 

111 
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^n 

T 

6 
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Distance from the tip of the 10-deg cone model measured 
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Ratio of specific heats 
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Angle between the flow axis and a line normal to the model 
surface 
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SECTION I 
INTRODUCTION 

The requirement for studying ablation and other phenomena asso- 
ciated with very high-speed flight has led to the development of a variety 
of small, high enthalpy, high pressure test facilities.    The very large 
power requirements as well as problems encountered in developing 
large or multiple-arc heaters have limited the size of these facilities. 
Since the facility is operated at high stagnation pressures and exhausts 
to atmospheric pressure,  a nonuniform expanding flow field exists over 
much of the model nose, beginning with the intersection of the nozzle 
Mach wave with the model,  as shown in Fig.   la, Appendix.    Therefore, 
for nose cone ablation tests of the types recently conducted, only a 
limited region of uniform flow is obtained.    One method of eliminating 
the expansion would be to place the facility and the model in a pres- 
surized tank.    However, this presents many serious operational and 
hardware problems. 

Another method,   as discussed herein,  is to surround the high en- 
thalpy flow with a coaxial cold air jet with static pressures matched at 
the interface.    The coaxial jet will eliminate the expansion at the high 
enthalpy nozzle exit, thereby providing the correct flow field over a 
much larger region of the model.   This is typically shown in Fig.   lb. 
Also for ablation testing of blunt bodies,  a proper matching of the cold 
airflow would impose the correct flow field over a body very large rela- 
tive to the high enthalpy flow nozzle.    Valid ablation data could then be 
obtained until the mixing of the flows finally reduces the enthalpy of the 
model boundary layer.    This coaxial flow technique would therefore im- 
prove the quality of the flow field,  permit the testing of larger models, 
or reduce the facility power requirements. 

The objective of the investigation reported herein was to determine 
the feasibility of the concept and to develop the required criteria for 
applying the technique to high enthalpy test facilities.    The investigation 
included both analytical and cold flow experimental studies. 

SECTION II 
PROBLEM AREAS AND ANALYTICAL CONSIDERATIONS 

In the development of the coaxial flow concept, three major problem 
areas arise.    They are (1) the aerodynamic interaction of the two flows 
with the model, <2) the very real hardware problems arising in applying 
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the technique to a high enthalpy facility,  and (3) the viscous mixing be- 
tween the flows.    The problems will be discussed further in this section. 

2.1  AERODYNAMIC INTERACTIONS 

Problems with the aerodynamic interaction of the two flows arise 
.not only in developing and bringing the two flows together without major 
disturbances, but also in determining criteria for "tailoring" the flows 
to obtain a satisfactory aerodynamic flow field on the test model.   To 
eliminate a shock and expansion at the junction of the flows will require 
the flows to have equal static pressures at the nozzle exits.    But even if 
equal pressure,  inviscid, uniform flow from each of the nozzles and a 
zero-thickness nozzle wall could be obtained, the coaxial flow inter- 
action with the model flow field must still be considered since the two 
flows will have different gas specific heat ratios. 

2.1.1   Slender Bodies 

For slender bodies,  the primary benefit to be obtained from the 
coaxial cold air jet is to move the flow expansion to atmospheric pres- 
sure from the high enthalpy nozzle exit to the outer cold air nozzle exit. 
Therefore,  depending upon the relative size of the jets,  a significantly 
larger region of the model may be tested. 

However, a problem arises in that at the intersection of the model 
shock and the high enthalpy jet boundary,   a reflected shock or expansion 
must occur unless the pressure change and the angle change for the two 
flows are exactly matched behind the model shock.    This is shown below 
in the sketch of an idealized flow field. 

Cold Air 
Slip Line 

High Enthalpy  Flow     / 

Model 

Shock or Expansion 
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For two-dimensional expansions or compressions (which must also be 
valid locally at the slip line-shock intersection)1 through small angles 
the following relation holds: 

^ - ±-gLa6 * r»* (r+1)M* I 4(f-» (*6)a       (i) 
P -/M^-l 4(M2-1) 

± higher order  terms 

Thereforej  for small slender bodies a matching of the linearized rela- 
tion for Zip/A6 will approximate the desired matching near the slip line- 
shock intersection.    This requires a "tailoring" of the two flows suchthat 

T/M
2
-I /   . VM

3
-IL .  . (2) 

'cold 'high 
air enthalpy 
jet jet 

in addition to the requirement for equal static pressure at the nozzle 
exits. 

2.1.2   Large Blunt Bodies 

The criteria of. Eq. (2) would not be expected to give satisfactory 
results for large blunt bodies where large flow deflections are required. 
However,  if the correct model pressure distribution can be obtained, 
and the dividing streamline between the cold and the high enthalpy gas 
still be located outside the model boundary layer, the correct test con- 
ditions at the model surface will result.    The exception, would be cases 
where gas radiation contributes a significant heat load to the aft regions 
of the model.   As will be shown later, the modified Newtonian theory 
gives a good representation of the pressure distribution over the nose 
region of blunt bodies.    This relation is 

Cp 
C "  cos     6 (3) 

pmax 

Applying this relation on each side of the dividing streamline between 
the two flows as the flows approach the model shock (coincident with the 
body for Newtonian theory) establishes the requirement 

CP      \ =       S_    \ (4) 

^max    'cold pmax '   high 
air enthalpy 
jet jet 
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but since the static pressures of the two flows are equal and the body 
surface pressure must be equal on each side of the dividing streamline, 
the criterion is established that the pitot pressure of the two jets be equal. 

The required Mach number relation for the flows may be obtained 
from the Rayleigh pitot formula: 

^ (5) 
p*2     r ^im2l y-1   r       r+i 

,2 -[**?*]        [ 

air enthalpy 
jet jet 

'cold ■-) p   'high 
air enthalpy 
jet jet 

P L        *       J I2r M    -   (y-l) 

However,  in practice, the desired relationship may be readily obtained 
from flow tables corresponding to the specific heat ratios of the two jets. 
Restating, the criteria for coaxial flows over large blunt bodies are 

p)cold = P high 
(6) 

jet jet 
and 

PtL 

(7) 

It should be noted that the different criteria given for slender and 
for blunt bodies fortunately do not result in drastically different Mach 
numbers for the cold .airflows,  at least for high enthalpy flows with 
Mach numbers of interest for ablation testing.   Also, both sets of 
criteria result in a lower Mach number for the cold airflow than for the 
high enthalpy flow.   This requires a lower total pressure and a lower 
mass flow for the cold air than would be required if the Mach number of 
the two flows was equal. 

2.2 HARDWARE CONSIDERATIONS 

During this investigation studies were made of the problems arising 
in designing,  fabricating,  and operating the coaxial flow hardware.   In 
these studies,  two major problems become obvious.    These are the very 
small size of the high enthalpy flow nozzle and the necessity for cooling 
the surfaces exposed to the high enthalpy flow. 

Ideally, the hardware should develop coaxial uniform flows with no 
disturbances generated by bringing the flows together.   Obviously, this 
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cannot be accomplished.    The finite thickness at the nozzle exit causes 
a flow expansion and compression analogous to the flow over a back- 
ward facing step.    This step becomes physically more significant as the 
size of the hardware is decreased.   The design of the nozzles should 
bring the flows together at as small and as near equal angles as possible. 
However,  in order to water cool as much of this nozzle lip as possible, 
the nozzle must have a large wall angle.   Also, the high enthalpy flow 
nozzle should be short to minimize the heat transferred to the nozzle. 
Fortunately,  for the testing of blunt bodies,  even large flow disturbances 
at the nozzle exit are weak when compared with the blunt-body shock. 

f 

Figure 2 shows a preliminary design for an arc-heater application. 
The lack of space between the nozzles for water cooling is evident. 
Water cooling for all of the lip between the nozzles is not possible.   How- 
ever,  some backside cooling is obtained from the cold airflow and some 
axial cooling to the water passage will be obtained.    These considera- 
tions place some lower limit on the Mach number and on the physical 
size of the high enthalpy flow.   The design studies do show that hard- 
ware can be fabricated for an arc heater with a nozzle throat as small 
as 3/8 in.   in diameter and an exit Mach number of 2. 5.    Nearly all of 
the problems discussed become more tractable as the size of the hard- 
ware is increased.   In particular, increasing the size of the nozzle for 
the high enthalpy flow and a careful design optimization should permit a 
larger annular aiflow and/or a lower Mach number for the high enthalpy 
flow.    A lower Mach number for the high enthalpy flow would be de- 
sirable where a very high model stagnation pressure is required. 

2.3  VISCOUS MIXING ALONG THE DIVIDING STREAMLINE 

Even if the correct aerodj'namic matching is obtained, viscous 
mixing of the two flows will invalidate the flow field at some point down- 
stream on the model.    Much effort has been directed by many investi- 
gators to the problem of two-stream mixing.   However, the present 
problem is that of the mixing of compressible,  nonisoenergetic,  three- 
dimensional streams of different gases with initially disturbed flow pro- 
files,  and therefore a most difficult problem to handle analytically.    In 
addition,  the influence of the model shock system on the mixing process 
is not known. 

Current analytical techniques have been studied and an estimate 
made of the mixing process for high enthalpy,  coaxial flow applications. 
The method used was an integral technique developed by Korst (Ref.  1) 
for compressible two-stream mixing with a Prandtl number of one. 
Estimates by Lamb (Ref.  2) were used for the effects of nonisoenergetic 
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mixing on the required similarity parameter.   Results of a sample 
calculation are shown in Fig.  3 for different values of the velocity ratio 
between the two streams.   It should be noted that {1) the spread of the 
velocity mixing region in the high enthalpy flow is not large,  and (2) the 
cold airflow does reduce the spread of the mixing region into the high 
enthalpy flow. 

This relatively small rate of growth of the mixing region makes the 
coaxial technique appear feasible; however,  it lacks experimentally 
verified values for the similarity parameter which governs the spread 
rate.    Therefore,  unpublished experimental pitot pressure surveys ob- 
tained in an arc heater were analyzed.    These surveys were compared 
with the theoretical calculations for the case of single-stream mixing 
and the results are shown in Fig.   4.    The quite good agreement between 
theory and experiment gives some confidence in the theoretical calcula- 
tions and in the values chosen for the similarity parameter.   In general, 
it does not appear that the viscous mixing will invalidate model ablation 
data until well back on the test model. 

SECTION III 
COLD FLOW TEST APPARATUS 

To verify the coaxial flow concept and to provide further insight 
into problems to be encountered in applying the concept,  cold flow ex- 
perimental tests were conducted.   Cold flow tests were chosen partially 
because of the relatively high costs of high enthalpy flow experiments, 
but especially because of the extreme difficulty in obtaining significant 
measurements in a high enthalpy flow.   These tests were conducted in 
the Propulsion Wind Tunnel (PWT) 1-ft Aerodynamic Wind Tunnel (IS) 
modified to be used as an evacuated test chamber. 

The configurations of the coaxial flow nozzle assembly and the 
reentry-type model used in these cold flow tests are shown in Fig.  5 
and the installation is shown in Fig.  6.    The central stream is carbon 
dioxide gas heated to approximately 800°R and with a nominal exit Mach 
number of 2. 5.    Carbon dioxide gas (CO2) was chosen to simulate the 
high enthalpy flow because its specific heat ratio is representative of 
such flows.    All calculations for the carbon dioxide flow assumed a per- 
fect gas with a specific heat ratio of 1. 28.   The annular air jet was un- 
heated air at a stagnation temperature of approximately 480CR.    Two 
different annular nozzles were used to give the air jet a nominal exit 
Mach number of either 2.0 or 2. 5.    The carbon dioxide total pressure 
was nominally 50 psia with the air stagnation pressure usually set to 
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give equal static pressure at the nozzle exits.   The test chamber could 
be evacuated to permit operation at an ambient pressure as low as 
70 psfa, thereby simulating the expanding flow field of a high pressure- 
high enthalpy facility exhausting to atmosphere.   The ambient pressure 
could also be set equal to the nozzle exit static pressure, thereby simu- 
lating the proposed operation of high enthalpy facilities in a pressurized 
tank. 

Prior to designing the cold flow nozzle assembly,  a preliminary 
design (Fig.  2) was made for application of the coaxial flow concept to 
a Linde 5-MW, N-4000 arc heater with a 3/8-in. throat diameter nozzle. 
The nozzles for the cold flow tests were then designed to be consistent 
with space and configuration limitations of the high enthalpy application. 
The size of the air jet relative to the high enthalpy jet is not the maxi- 
mum that could be obtained,  but was selected to be compatible with the 
different air jet nozzles required by the different flow matching criteria. 
Once criteria for the two flows have been established, a careful design 
optimization for a particular facility should permit some increase in the 
air jet size.    The nozzles for the cold flow tests are shorter than would 
be desired to develop uniform, parallel flow but are typical of a high 
enthalpy facility application.    Both the central CO2 and the annular air 
nozzles were designed by computer programs utilizing the method of 
characteristics.    No corrections were made for the nozzle boundary 
layer.    The configuration and the design coordinates for the nozzles are 
shown in Fig.  7.    Because of a fabrication error, the dimensions of the 
CO2 nozzle differ substantially from the design values and therefore a 
set of "as built" coordinates are also presented. 

Two pressure-instrumented models were used in the cold flow tests. 
One was a sharp 10-deg cone model and the other a large hemisphere 
10-deg cone,   reentry shape model.    Both models have a 2-in. base 
diameter.   The reentry shape model has a nose radius of 0. 72 in., 
which is the equivalent of a 1/2-in. nose radius model when the cold 
flow nozzle assembly is scaled to that typical of the 3/8-in. throat diam- 
eter,  5-MW arc heater.    Normally models no larger than l/4-in. radius 
are tested in these arc heaters.    Both models were tested at varying 
axial positions as well as both with and without the annular cold airflow. 
Model pressures were measured on a mercury manometer and re- 
corded photographically.    An error analysis based on a 95-percent con- 
fidence level shows the pressure data presented to be accurate to 
p/Pt9 = ±^. 006 for the reentry body data and to p/p^. = ±0. 005 for the 

10-deg cone data. 
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In addition to the pressure models,  pitot pressure and total tem- 
perature surveys were made of the nozzle flow field without the models 
present.    Also,  schlieren photographs of the flow field were taken both 
with and without models present. 

SECTION IV 
EXPERIMENTAL RESULTS AND DISCUSSION 

4.1  COAXIAL FLOW FIELDS 

Prior to the model tests,  pitot pressure and stagnation temperature 
surveys were made through the coaxial flow fields.    The results of these 
surveys are shown in Figs.  8 and 9 for conditions where the ambient or 
cell pressure is equal to the nozzle exit static pressure.   Schlieren 
photographs of the corresponding flows are shown in Fig.   10.    These 
data show the two streams to be of a generally good quality with nominally 
the design Mach numbers.    Both the pitot pressure and the stagnation 
temperature distributions show very sharp boundaries between the hot 
CO2 and the cold airflow.   There is very little momentum or energy 
mixing between the two flows, which is in agreement with predictions 
for flows with nearly equal velocities. 

Although the stagnation temperature distributions are very uniform, 
the pitot pressure uniformity is poorer than hoped for.    The nozzles 
were of an arc-heater-type design, being short to minimize nozzle heat 
transfer.    The short design and the manufacturing inaccuracies pre- 
viously discussed resulted in the CO2 stream having a nonuniform flow, 
particularly along the nozzle axis.   The axisymmetric design may pro- 
vide a "focusing'1 of wall disturbances on the nozzle centerline.    This 
centerline nonuniformity also becomes evident in the model stagnation 
point pressure data.    Shown in Fig.   11 is a compilation of pitot probe 
and reentry model stagnation pressure data which emphasizes the axial 
variation.   The model stagnation pressure data shown have been shifted 
upstream by 0. 16 re,  which is the theoretical model shock stand-off 
distance.    Model data are shown both with and without the coaxial air- 
flow.    Also shown is the pressure near the nozzle exit as calculated by 
a method-of-characteristics solution for the "as built" nozzle contour. 
These data show the centerline disturbance to be caused by the central 
nozzle and not by the coaxial airflow.   Although the centerline flow is 
not as uniform as desired, it is generally as good as that obtained in arc- 
heated flows from contoured nozzles, particularly after nozzle erosion 
has occurred. 

8 
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4.2   REENTRY-TYPE MODEL TESTS 

To evaluate the results of the model tests, an experimental or 
theoretical basis of comparison is needed.   Several wind tunnel studies 
of reentry bodies have shown the modified Newtonian theory to give very 
good results from the nose to near the junction of the sphere and the 
cone.    Figure 12 shows a comparison of this theory with wind tunnel 
data from Ref.  3 for conditions very near those of the current tests. 
Also shown are the theoretical values from Refs.  4 and 5 for 10-deg 
cones,  which the experimental data should approach asymptotically. 
The subsequent figures presenting the coaxial flow data will show the 
theory (corrected for y = 1. 28) as a basis for comparison.    Because of 
the nonuniform flow on the nozzle centerline, the coaxial flow data are 
ratioed to the pitot pressure for uniform flow with a specific heat ratio 
of 1. 28 and a Mach number of 2. 5 instead of the measured stagnation 
point pressure. 

The results of tests without the annular air jet are shown in Fig. 13. 
For such a large model, the pressure rapidly falls off to the ambient 
pressure, providing a very limited region of useful data.   Schlieren 
photographs corresponding to these data are shown in Fig.   14.    One 
proposal for increasing the flow quality and the model size capability 
of present arc heaters has been to place the arc heater and the model 
in a pressurized tank.   As shown in Fig.   15,  such a technique would 
provide only a small improvement for such a large model. 

The previous theoretical analysis based on the modified Newtonian 
theory (Section 2. 1. 2) has shown that the matching of the static and the 
pitot pressures would be required for large blunt bodies, therefore re- 
quiring an airflow Mach number of 2. 42 for the cold flow tests.    Results 
of the tests with the annular airflow having the "incorrect" Mach num- 
ber of 2. 0 are shown in Fig.   16.   A significant improvement is seen 
over the data previously presented without the air jet.    However,  as 
expected from the theory, the pressures are too low over the region of 
the model that is influenced by the annular air jet. 

When the air jet Mach number is changed to 2.5, close to the re- 
quired 2.42,  a remarkable improvement is found.   The results of tests 
at an axial position typical of ablation testing are shown in Figs.   17 
and 18.    The annular air jet provides the desired flow past the sphere- 
cone junction of a model that is twice the size that can normally be 
tested.    The technique therefore offers the potential of at least doubling 
the model size capability of high enthalpy facilities.   Although it was 
not evaluated in these tests, the coaxial technique should give valid data 
even further aft on relatively smaller models.   The decrease in pressure 
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aft of the junction is caused by the expanding flow field originating at 
the air nozzle outer lip,  which would be eliminated in a pressurized 
tank.    The results of tests simulating the tank, given in Figs.   19 and 20, 
show that the desired flow field can be obtained even further back on this 
large model.    The results of the reentry model tests therefore show that 
the flow matching criteria based on the modified Newtonian theory 
(Section 2. 1. 2) to be correct for large blunt bodies. 

The results of tests to determine.the effect of model position are 
shown in Figs.  21 and 22.    Two effects are noted:   (1) As expected,  with 
the model very far downstream (x/re = 5) the expansion from the outer 
lip of the air nozzle strikes most of the model causing the model pres- 
sures to be too low.    (2)   When the model is very close (x/re < 1/2) the 
rise in pressure from the model shock propagates through the mixing 
region and causes a separation of the flow fields.   This is noted in the 
pressure dip at s/rn = 0. 8 for the data at x/re = 1/2.   However,  neither 
of the phenomena is considered to be a problem in the actual application 
of the technique. 

4.3 CONE MODEL TESTS 

Tests were also conducted with a 10-deg cone model to establish 
criteria for the testing of small,  slender bodies in coaxial flows.   As 
discussed in Section 2. 1. 1, the primary benefit expected from the co- 
axial jet is to move the flow expansion downstream on the model and 
thereby provide a significantly larger test region on the model.    That 
this result is in fact achieved is shown in Fig.  23.   These results show 
the annular air jet to increase the valid test region axially on the model 
from approximately one nozzle exit radii to from three to four radii. 
Also, larger increases would be-obtained by relatively larger annular 
air nozzles.    The theoretical pressure ratio shown is from Refs.  4 
and 5,  corrected for a specific heat ratio of 1. 28.    The deviations about 
the theoretical value are believed to be caused primarily by the non- 
uniform central nozzle flow and perhaps to a lesser extent by the in- 
correct Mach numbers of the annular air jets.   An air jet Mach number 
of 2. 25 would be required to match the slender body criteria given in 
Section 2. 1. 1.    However,  as shown by Fig.  23a, a facility designed by 
the blunt-body criteria could well be used to test slender bodies also. 

The effect of the coaxial air jet for simulated tests in a pressurized 
tank is shown in Fig.   24.    The coaxial jet provides an improvement in 
the model flow field by reducing the model shock-jet boundary inter- 
action, but the improvements are not as pronounced as shown for the 
tests simulating an atmospheric exhaust. 
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SECTION V 
CONCLUDING REMARKS 

The analytical and cold flow experimental investigation of ablation 
testing in the flow field of coaxial hot and cold jets indicates the follow- 
ing conclusions: 

1. The coaxial flow technique will provide the correct 
flow field over the nose region of relatively very 
large,  reentry-type models and the technique can 
substantially increase the facility model size capa- 
bility. 

2. For very slender bodies, the coaxial technique can 
increase the model length for which valid data can be 
obtained by a factor of at least two to four.    This is 
achieved primarily by moving the flow expansion to 
atmospheric pressure from, the high enthalpy nozzle 
to the cold air nozzle exit. 

3. The flow matching criteria based on the modified 
Newtonian theory is valid for large reentry-type 
models.   A facility designed for the reentry body 
criteria can well be used for slender bodies also. 

4. Although the small physical size and the requirement 
for cooling the high enthalpy nozzle present signifi- 
cant design problems, the studies show that hardware 
can be fabricated for a 5-MW arc heater with a nozzle 
throat as small as 3/8-in.  in diameter and an exit 
Mach number of 2. 5. 

5. It does not appear that viscous mixing between the 
flows will invalidate the data for currently envisioned 
tests until well back on the test models.   However, 
experimentally verified data for this type of mixing 
process is needed. 

6. The concept of testing in a pressurized tank (hot flow 
only) will not provide a significant improvement in 
capability for large,  blunt models as used in this in- 
vestigation.    The pressurized tank does provide an 
improvement in capability when used with the coaxial 
flow technique. 
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Fig. 18   Schlieren Photograph of the Flow Field Corresponding to Fig. 17, Mc  = 2.5, pu/p^  ■ 6 
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